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Project Goals + Structure



Stages of enzyme engineering

Target Discovery Optimization Scale up
finding
Identify desired catalytic Identify a small Find variants that improve activity, Engineer production conditions
activity and usage number of natural thermostability, solubility, (typically fermentation) to
requirements (e.g., pH and or engineered expression, etc. over the produce the target enzyme at
temperature). sequences with backbones large scale.
non-zero activity.

Focus of this seminar series: using ML to improve both discovery and optimization

This talk: a deep dive about an optimization project



NucB - a nonspecific endonuclease
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e hydrolyzes both single- and double-stranded DNA substrates (light orange)
Isolated from Bacillus Licheniformis
e Optimal pH9

Basle et al., 2018 "Crystal structure of NucB, a biofilm-degrading endonuclease"



Goal of the optimization campaign: restore and improve
NucB activity to unlock uses as a therapeutic

Nuclease activity dependence on buffer and pH
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Target clinical application
Degrade biofilms that accumulate
on chronic wounds
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Activity as % of max activity at pH 10

e 80% reduced activity at pH 7
(therapeutic pH) " 7 :
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80% reduction in
enzyme activity



Protein optimization goal
Improve the catalytic activity of NucB at pH 7.

Methods research goal
Demonstrate that ML-guided protein design can improve over directed evolution
when both use extremely high throughput experiments.



Experimental Platform - Ultra-high-throughput screening
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Thousands of droplets per second!



http://www.youtube.com/watch?v=S1fEHLarRZk

The two ways that we used cell sorting
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The two ways that we used cell sorting

000000000000
000000000000

000000000000

. 000000000000
Isolating Top 000000000000
000000000000

Performers 000000000000
000000000000

Sort sequentially at higher thresholds Purify and test

Collecting Data
for Modeling

Sort at multiple thresholds  NGS Compute enrichment  Construct dataset



Mutagenize Recombine Hits

Baseline directed evolution techniques A DE % [ ir

Screen Screen

Directed Evolution - DE Hit Recombination - HR
e Fully in-vitro e Designed in-silico
e Independent campaign e Model-free
e Mutagenesis followed by screening e Screened in parallel with our designed
e Mutagenesis: libraries
o Error-prone PCR e If Aand B are both good, design A+B for
o  Recombination (shuffling) the subsequent round

: shufing  — T Wp—




Mutagenize Recombine Hits

Baseline directed evolution techniques A DE 3 HR

Directed Evolution - DE

Fully in-vitro
Independent campaign
Mutagenesis followed by screening

Mutagenesis:
o  Error-prone PCR
o  Recombination (shuffling)

Shuing  — T p—

Screen Screen

" Sam Sinai

Maybe it's not that well known, but the recombination space is relatively

dense functional proteins (I thought this was somewhat known since
schema). Take 2-5 functional sequences, recombine them however you
like, you'd find a much much higher number of them to be functional
than random.

(’9) Debora Marks &

Chance favors the prepared genome

2

These are very successful techniques!



Mutagenize

The optimization campaigns /‘\

Starting point = wildtype (WT)
4 Rounds G1

Initial G1 library generated by /‘\ f K\ N \“@o K\

error-prone PCR - epPCRY = . ML2 ML3 ML4

DE run independently \ / l J 6\0/&&/&& k/
S

HR and ML screened in
Recombine Hits

parallel
HR2 ' HRS3 ' ' HR4~
\

Screen

G2 G3 G4



e 4 Rounds

G4

G3

G2



Mutagenize

The optimization campaigns /‘\

e 4 Rounds
e  Starting point = wildtype (WT) G1

e Initial G1 library generated by /'\ f K\ N \“@o K\
error-prone PCR - epPCRY = . ML2 ML3 ML4

Recombine Hits

\ 7

Screen

G2 G3 G4



Mutagenize

The optimization campaigns /‘\

4 Rounds
Starting point = wildtype (WT) G1

Initial G1 library generated by /‘\ f /\ N \“@o K\

error-prone PCR - epPCRY = . ML2 ML3 ML4

DE run independently \ / l J 6\0/&&/&&' k/
S

HR and ML screened in
Recombine Hits

parallel
HR2 ' HRS3 ' ' HR4~
\

Screen

G2 G3 G4



Campaign sizes
~10K per round

9.4K



Zero-shot design:

Could we have obtained a better initial

Library than error-prone PCR?

What we did

Generate a library using no
experimental data for model
training.

Compare the library to epPCR.

Mutagenize

Random initial
I|brary f
Screen

Retrieve

Homologs from
Protein DB

ML-designed
initial library



Methods



ML Library Design Methods



TeleProt: our library design framework

Search space:

consider substitutions (no indels) to the WT

Acquisition function:
use a model f(seq) to predict enzyme activity

Candidate generation:
find new sequences with high f(seq)

Batch selection:
select a diverse subset of candidates

f(x) €=~y

o ers . P < ]
acquisition function | - local search
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local search trust region



Supervised Model Fitting

MIKKWAV ILLFSALVLLGLSGGAAYSPQ}[AEGA
MIKKWAVHLLFSALVLLGLSGGAAYSPQHAE IA
MIKKWAVHLLFSALVLL ILSSGAAYSPQHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYS A

MIKKWAVHLLFSALVLLGLSGGAAYSPQHAEGA
MIKKIA‘/HLLFSAL‘/LLGLSGGAAYS?QHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYSPQHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYS
MIKKWAVHLLFSALVLLGLSGG IAYSPQI—,AEGA
MIKKWAVHLLE IALVLLGLSGGAAYSPQEAEGA
MIKKWAVHLLFSALVLLGLSGGAAYSP IHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYSPQHAEGA

Enzyme activity data

test

Split data into train and test sets

CNN Classifier



Unsupervised Model Fitting
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NucB homologs Variational autoencoder (VAE)

Similar model architecture
as Riesselman et al., 2018



Candidate Generation #1: Local Search

£(%) \

acquisition function

\

p<<z 7

-~ local search

local search trust region

Goal:

Find variants with high acquisition function
score that are in regions close to the
training data.

Techniques used:

Initialize the search at the WT and at hits
from prior rounds.

Evolve a population of sequences towards
those with high score.

Use an ensemble of different
non-model-based methods for mutating
high-scoring sequences.



Candidate Generation #2: Proposal Distribution

Goal:

Sample variants that are likely to be

r\ functional and also in regions where the
o 'f(x) ) acquisition function is reliable.
acquisition function
\/\ Techniques used:
e VAE: Sample from a VAE trained on a
\ /\ \ combination of homologs and hits
p(x) \ \

from prior rounds.
proposal
distribution \l \/

e ProSAR: Estimate the effect of each
mutation using an additive model.
Sample combinations of the
top-scoring mutations (Fox et al.
2007).




Batch Selection

/\_ ‘A‘

Specify a target distribution Select a subset of the
over extrapolation scores candidates that satisfy the
Assign each candidate (green) an extrapolation score
'extrapolation score'": min distance from distribution and also do not
a hit in the training data (orange). over-use individual
mutations.

Why is this necessary?
Simply selecting the top-scoring sequences leads to a low diversity library
and doesn't provide a controllable explore-exploit tradeoff.



Sampling variants from a VAE

VAE (Kingma et al., 2014)
Generative model: z ~ Normal, x ~ Decoder(z)

Inference: z ~ Encoder(x)

Sampling WT neighbors (Giessel et al., 2022)
x ~ Decoder(Encoder(WT))

Reject any x with too many mutations or gaps.
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TeleProt Systems

Method Name Acquisition Function Candidate Generation Round

Zero-shot None Neighbor sampling with VAE® ZS

MBO-DNN CNN classifier Randomized local search ML2, ML3, ML4

Prosar+Screen VAE likelihood Combinatorial library from ProSAR®! ML2, ML3

Sample+Screen CNN classifier Neighbor sampling with semi-supervised VAE ML4

Data source Evolution Assay Both
. ' DE2 ‘ —b' DE3 ‘

Key idea
As data accumulated, we transitioned (wr) ;m\ = P [l (. P
from depending on evolutionary data to =

assay-labeled data.

7 ML4 ]

—p HR4
A\


https://paperpile.com/c/Vsd0jI/gigHN
https://paperpile.com/c/Vsd0jI/1jVg3
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Key idea: Enrichment factors
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Enrichment Factor:
A: 0



Key idea: Use fiducial sequences to calibrate hit-calling

e Fiducial has known activity

e Multiple replicates of a fiducial using
synonymous codons to serve as a null
distribution

e For anew variant EF: assign p-value with
right-sided t-test compared to fiducial
Call a “hit” if p-value is significant after
FDR correction

140
130+

12;

Count

ON PO

[
source
B =3 neg. control
M -

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
enrichment factor:



Sorting at multiple thresholds gives data with intermediate
activity resolution

\
s

> A73R?

Sort at multiple Compute Resolve labels and
thresholds enrichment construct dataset



Results



Reminder: Campaign



Mutagenize Recombine Hits

Reminder: Baseline DE techniques A DE ¥ [ w Y

Screen Screen

Directed Evolution - DE Hit Recombination - HR
e Fully in-vitro e Designed in-silico
e Independent campaign e Model-free
e Mutagenesis followed by screening e Screened in parallel with our designed
e Mutagenesis: libraries
o Error-prone PCR e If Aand B are both good, design A+B for
o  Recombination (shuffling) the subsequent round

: shufing  — T Wp—




Mutagenize

Reminder: campaign structure /‘\

Starting point = wildtype (WT)
4 Rounds G1

Initial G1 library generated by /‘\ f K\ N \“@o K\

error-prone PCR - epPCRY = . ML2 ML3 ML4

DE run independently \ / l J 6\0/&&/&& k/
S

HR and ML screened in
Recombine Hits

parallel
HR2 ' HRS3 ' ' HR4~
\

Screen

G2 G3 G4



Activity of the top-performing variants



Isolating Top Performers
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Purify and test

Sort sequentially at higher
thresholds



o Hit validation funnel
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Top ML variant: 19x. Top DE variant: 12x. -

Activity of Best Variant
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Note: A73R ~8x improvement

Activity of Best Variant

Nuclease Activity Fold-Improvement
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Assessing the
Overall Composition of the Libraries



ML produced a much higher rate of hits than HR

Hit rate for activity > A73R

0.350,
& — HR4
§0.175_ —— ML4-MBO-DNN
~ S _ N

0.000,—2=¢"2"8 9 10 11 12 13 14 15
Number of mutations

Number of designs

ML4 maintained high activity (>A73R) while designing out to 15 mutations



ML designs were substantially more diverse than HR designs

3 library
10 * —— HR4
g ] ——— ML4-MBO-DNN
A7 1 population
3 402 —— >A73R
5 10 =
e 1 --- pre-sort
O ] »  HRA4 lib. size
) N > ML4-MBO-DNN lib. size
£ 10
- | 3
0
10 )

5 10 15 20 25
Cluster diameter

o

e Cluster diameter: maximum Hamming distance between sequences in the
same cluster.
e Similar pre-sort library sizes



O=C
Designs exhibit Structural Diversity "“E,r

e Active designs span many positions
e Span many functional domains



https://paperpile.com/c/apdPFg/s3DUX
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https://paperpile.com/c/apdPFg/s3DUX

Zero-Shot Initial Library Design



Reminder: zero-shot design

Random initial ~» DE2

) D0

ML-designed
initial library



Why did we pursue this investigation?

Retrospective analysis on the G1 data showed that a zero-shot model
could be used to enrich for functional variants.

P e
= Non-functional — 0 1007 =,
== functional c? go "
c (®) > 0,
o .4: O J)‘);“)‘)
s oY 60 )
| - C GL) ),
(@] - ’.“a‘
Q e n 40/ "%,
o b~ 'E "“'.,
(a8 o .(_U 20 1 ..J"‘
=
o 01 , , . . ,
O 20 40 60 80 100

-80 —60 —40 =20 O
Zero-shot model score
(WT score = 0)

% reduction in library size

We could have reduced the library by 50%
while keeping 75% of the functional variants



Finding enzyme variants with non-zero activity

Hit rate for activity > 0

0.78%
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Number of mutations
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zero-shot design has a better hit rate

Number of clusters

Number of clusters for activity > 0
4
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Cluster diameter

zero-shot hits are more diverse



Finding enzyme variants that are better than the WT

Hit rate for activity > WT

0.20
o
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-‘f’ 0.10—_
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. K —— zero-shot sampling
0.00
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Number of mutations

W ——

]

zero-shot design has a better hit rate

Number of clusters

Number of clusters for activity > WT
4 .
1 O 3 sublibrary name
» —— epPCR
] —— zero-shot sampling
3 population
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1 O E 4 --- pre-sort
] » epPCRlib. size
»  zero-shot sampling lib. size

10 15 20
Cluster diameter

zero-shot hits are more diverse



Our Enzyme Activity Dataset

github.com/google-deepmind/nuclease design



Our open-source enzyme fithess landscape - 56K variants!

10000

epPCR

non-functional ‘

activity > 0
activity > WT
activity > A73R

8000 -

6000

Count

4000

2000 f::

0 , . . . , .
0 2 4 6 8 10 12
Number of mutations

60.8%

‘ A” data

Many more active variants than
epPCR alone

e Active variants out to >13 mutations °
e Four discrete activity levels

github.com/google-deepmind/nuclease design
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Future work

e Improving modeling with, e.g., representations from protein language models

e Leveraging structure-conditioned models for zero shot design

e Avoiding bottlenecks of DNA synthesis costs using randomized DNA
synthesis protocols

e Incorporating experimental uncertainty from sequencing data



Summary of our findings

e MLDE outperformed DE when compared head-to-head

e TeleProt is a flexible framework for balancing evolutionary and assay-labeled
data when designing libraries.

e MSAs are powerful for zero shot design. We didn’t use structure or
large-scale pretraining!

e Using high-throughput experiments enabled us to employ a large, diverse
portfolio of sequence design approaches
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Additional Info



% of functional
variants recovered

% of > WT
variants recovered
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ML methods extrapolated beyond their training set

Training through G1, activity > WT

1500 1 M 23 :
= [ training set hits
[ designed hits
1000 1
€
2
Q
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500 1
0 T T T T
Training through G2, activity > WT
1250 - r L training set hits
[ designed hits
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5 750
8
500 1
250 1
0 T T T T
Training through G3, activity > WT
T [ training set hits
1500 1 3 designed hits
£ 1000 A
Q
]
500 1
0 T T T T
0 5 10 15 20

Number of mutations



ML methods extrapolated beyond their training set
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Traditional directed evolution

o - ']
= ...,

I
Add random DNA library Isolate top-performing Recombine top variants
mutations . in-vitro
L variants
in-vitro

< |




Candidate Generation #2: Proposal Distribution

Goal:

Sample variants that are likely to be
functional and also in regions where the

. 'f(x) . \ = acquisition function is reliable.
acquisition function --<_ local search
o

Techniques used:

e Sample from a VAE trained on a
\ /\ combination of homologs and hits
p(x) | from prior rounds.
proposal e Estimate the effect of each mutation
Jistribution \’ \/ using an additive model. Sample

combinations of the top-scoring
mutations (ProSAR; Fox et al. 2007).



Project goals + structure: Neil
ML methods: David

Data collection / processing: Neil
Results: Neil

Zero-Shot results: David
Dataset: David

Discussion: Neil



