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Project Goals + Structure



Stages of enzyme engineering

Target 
finding

Discovery Optimization

Identify desired catalytic 
activity and usage 

requirements (e.g., pH and 
temperature).

Find variants that improve activity, 
thermostability, solubility, 
expression, etc. over the 

backbones

Identify a small 
number of natural 

or engineered 
sequences with 

non-zero activity.

Scale up

Engineer production conditions 
(typically fermentation) to 

produce the target enzyme at 
large scale.

Focus of this seminar series: using ML to improve both discovery and optimization

This talk: a deep dive about an optimization project



NucB - a nonspecific endonuclease

● hydrolyzes both single- and double-stranded DNA substrates (light orange)
● Isolated from Bacillus Licheniformis
● Optimal pH 9

Basle et al., 2018 "Crystal structure of NucB, a biofilm-degrading endonuclease"



Target clinical application 
Degrade biofilms that accumulate 
on chronic wounds

Challenge

● 80% reduced activity at pH 7 
(therapeutic pH)

Goal of the optimization campaign: restore and improve 
NucB activity to unlock uses as a therapeutic

80% reduction in 
enzyme activity

Therapeutic pH Wildtype pH



Protein optimization goal
Improve the catalytic activity of NucB at pH 7.

Methods research goal
Demonstrate that ML-guided protein design can improve over directed evolution 
when both use extremely high throughput experiments.



Experimental Platform - Ultra-high-throughput screening

Thousands of droplets per second!

http://www.youtube.com/watch?v=S1fEHLarRZk


The two ways that we used cell sorting



The two ways that we used cell sorting



Hit Recombination - HR

● Designed in-silico
● Model-free
● Screened in parallel with our designed 

libraries
● If A and B are both good, design A+B for 

the subsequent round

Baseline directed evolution techniques

Directed Evolution - DE

● Fully in-vitro
● Independent campaign
● Mutagenesis followed by screening
● Mutagenesis:

○ Error-prone PCR
○ Recombination (shuffling)

DE

Mutagenize

Screen

HR

Recombine Hits

Screen



Hit Recombination - HR
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● Model-free
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libraries
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Directed Evolution - DE
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These are very successful techniques!
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9.4K
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1.0K

9.5K
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8.5K

1.5K

Campaign sizes
~10K per round



Mutagenize

What we did

Generate a library using no 
experimental data for model 
training.

Compare the library to epPCR.

WT epPCR

DE2

ML2

HR2

ScreenG1

G2

ZS

Retrieve 
Homologs from 

Protein DB

ML-designed 
initial library

Random initial 
library

Zero-shot design: 
Could we have obtained a better initial
Library than error-prone PCR?



Methods



ML Library Design Methods



Search space: 
consider substitutions (no indels) to the WT

Acquisition function: 
use a model f(seq) to predict enzyme activity 

Candidate generation: 
find new sequences with high f(seq)

Batch selection: 
select a diverse subset of candidates

TeleProt: our library design framework



CNN Classifier

MIKKWAV HLLFSALVLLGLSGGAAYSPQHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYSPQHAE GA

MIKKWAVHLLFSALVLL GLSGGAAYSPQHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYSPQHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYSPQHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYSPQHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYSPQHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYSPQHAEGA

MIKKWAVHLLFSALVLLGLSGG AAYSPQHAEGA

MIKKWAVHLLF SALVLLGLSGGAAYSPQHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYSP QHAEGA

MIKKWAVHLLFSALVLLGLSGGAAYSPQHAEGA

Enzyme activity data Split data into train and test sets

train test

> N mutations

Supervised Model Fitting



Unsupervised Model Fitting

NucB homologs

Protein 
Database

Variational autoencoder (VAE)
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Similar model architecture 
as Riesselman et al., 2018



Candidate Generation #1: Local Search

Goal:

Find variants with high acquisition function 
score that are in regions close to the 
training data.

Techniques used:

Initialize the search at the WT and at hits 
from prior rounds. 

Evolve a population of sequences towards 
those with high score.

Use an ensemble of different 
non-model-based methods for mutating 
high-scoring sequences.

f(x) 
acquisition function

local search trust region

local search

{x, y}
experimental data 



f(x) 
acquisition function

p(x) 
proposal 

distribution

{x, y}
experimental data 

Candidate Generation #2: Proposal Distribution

Goal:

Sample variants that are likely to be 
functional and also in regions where the 
acquisition function is reliable.

Techniques used:

● VAE: Sample from a VAE trained on a 
combination of homologs and hits 
from prior rounds.

● ProSAR: Estimate the effect of each 
mutation using an additive model. 
Sample combinations of the 
top-scoring mutations (Fox et al. 
2007).



i
ii iii

Batch Selection

Assign each candidate (green) an 
'extrapolation score': min distance from 
a hit in the training data (orange).

Specify a target distribution 
over extrapolation scores

Select a subset of the 
candidates that satisfy the 
extrapolation score 
distribution and also do not 
over-use individual 
mutations.

Why is this necessary? 
Simply selecting the top-scoring sequences leads to a low diversity library 
and doesn't provide a controllable explore-exploit tradeoff.



Sampling variants from a VAE

VAE (Kingma et al., 2014)

Generative model: z ~ Normal, x ~ Decoder(z)

Inference: z ~ Encoder(x)

Sampling WT neighbors (Giessel et al., 2022)

x ~ Decoder(Encoder(WT))

Reject any x with too many mutations or gaps. 
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DecoderEncoder



Method Name Acquisition Function Candidate Generation Round

Zero-shot None Neighbor sampling with VAE100 ZS

MBO-DNN CNN classifier Randomized local search ML2, ML3, ML4

Prosar+Screen VAE likelihood Combinatorial library from ProSAR61 ML2, ML3

Sample+Screen CNN classifier Neighbor sampling with semi-supervised VAE ML4

Data source Evolution Assay Both

TeleProt Systems

Key idea
As data accumulated, we transitioned 
from depending on evolutionary data to 
assay-labeled data.

https://paperpile.com/c/Vsd0jI/gigHN
https://paperpile.com/c/Vsd0jI/1jVg3


Data Collection



Key idea: Enrichment factors

Sort

A: 5 | 0.5
B: 5 | 0.5

A: 0 | 0.0
B: 5 | 1.0

Enrichment Factor:
A: 0
B: 2



Key idea: Use fiducial sequences to calibrate hit-calling

● Fiducial has known activity
● Multiple replicates of a fiducial using 

synonymous codons to serve as a null 
distribution

● For a new variant EF: assign p-value with 
right-sided t-test compared to fiducial

● Call a “hit” if p-value is significant after 
FDR correction



Sorting at multiple thresholds gives data with intermediate 
activity resolution

Sort at multiple 
thresholds

Compute 
enrichment

Resolve labels and 
construct dataset

> A73R?> WT?> 0?



Results



Reminder: Campaign 



Hit Recombination - HR

● Designed in-silico
● Model-free
● Screened in parallel with our designed 

libraries
● If A and B are both good, design A+B for 

the subsequent round

Reminder: Baseline DE techniques

Directed Evolution - DE

● Fully in-vitro
● Independent campaign
● Mutagenesis followed by screening
● Mutagenesis:

○ Error-prone PCR
○ Recombination (shuffling)

DE

Mutagenize

Screen

HR

Recombine Hits

Screen
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HR2 HR3 HR4
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Reminder: campaign structure
● Starting point = wildtype (WT)
● 4 Rounds
● Initial G1 library generated by 

error-prone PCR
● DE run independently
● HR and ML screened in 

parallel



Activity of the top-performing variants



Sort sequentially at higher 
thresholds

Purify and test

Isolating Top Performers



Sorting

104-6  variants

Successive sorts

102-4  variants

Liquid Culture 

Plate Assay

Tier 1

101 variants

Liquid Culture 

Plate Assay

Tier 2 

101 variants

Specific Activity Assay

5 variants

Biofilm disruption assay

3 variants

Resolution

Throughput Hit validation funnel

*
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Top ML variant: 19x. Top DE variant: 12x.

● Purified enzyme activity assessed at 
4 concentrations

● Top hit validated for 
biofilm degradation



A
63

S
,D

64
S

,A
73

R

A
63

P,
A

73
R

,D
74

H
,I8

4Y

A
73

R

A
73

R
,D

74
S

Note: A73R ~8x improvement



Assessing the 
Overall Composition of the Libraries



ML produced a much higher rate of hits than HR

N
um

be
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ML4 maintained high activity (>A73R) while designing out to 15 mutations



ML designs were substantially more diverse than HR designs

b) Clustering the hits by sequence similarity reveals that active ML4-MBO-DNN designs (solid orange) were 
substantially more diverse than active HR4 designs (solid green). The diversity of active designs was driven 
by both the improved hit-rate of ML4-MBO-DNN compared to HR4 and the diversity of the designed library 
prior to sorting (dotted lines). The cluster diameter is defined as the maximum Hamming distance between 
two sequences in the same cluster.

● Cluster diameter: maximum Hamming distance between sequences in the 
same cluster.

● Similar pre-sort library sizes



(c) Three-dimensional model of NucB (PDB ID: 5OMT) with DNA based on the structural homology with Vvn endonuclease (PDB ID: 1OUP) 
as described in Baslè, et al.105. NucB forms a square pyramid structure with a positively charged DNA binding interface and a negatively 
charged core. Mutations found in the HR4 and ML4-MBO-DNN designs are highlighted on the structure in green (left) and orange (right), 
respectively. (d) NucB secondary structure, per-position Shannon entropy, and mutations identified by the HR (green) and ML (orange) 
campaigns. The 52 highly-active nucleases designed by ML exhibited mutations that span more diverse positions (orange) in the amino acid 
sequence than 9 HR hits (green). Amino acids are ordered by increasing isoelectric point (pI). Wildtype residues are indicated in gray.

Designs exhibit Structural Diversity

● Active designs span many positions
● Span many functional domains

HR ML

https://paperpile.com/c/apdPFg/s3DUX
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● Span many functional domains
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ML

https://paperpile.com/c/apdPFg/s3DUX


Zero-Shot Initial Library Design



Mutagenize

WT epPCR

DE2

ML2

HR2

ScreenG1

G2

ZS

Retrieve 
Homologs from 

Protein DB

ML-designed 
initial library

Random initial 
library

Reminder: zero-shot design



Why did we pursue this investigation?

Retrospective analysis on the G1 data showed that a zero-shot model 
could be used to enrich for functional variants.

We could have reduced the library by 50% 
while keeping 75% of the functional variants



# 
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Finding enzyme variants with non-zero activity

zero-shot design has a better hit rate zero-shot hits are more diverse



# 
de

si
gn

s

Finding enzyme variants that are better than the WT

zero-shot design has a better hit rate zero-shot hits are more diverse



Our Enzyme Activity Dataset
github.com/google-deepmind/nuclease_design



Our open-source enzyme fitness landscape - 56K variants!

(bottom) Overview of the genotype-phenotype landscape. (d) The overall dataset, consisting of designed variants and 
error-prone PCR variants, provides many representatives across a broad range of activity levels. (e) The error-prone PCR 
dataset is more imbalanced. (f) The overall dataset contains many functional variants and variants with activity > WT that are far 
from the WT (x-axis clipped to show a maximum of 13 mutations).

● Active variants out to >13 mutations
● Four discrete activity levels

● Many more active variants than 
epPCR alone

epPCR

All data

github.com/google-deepmind/nuclease_design 



Discussion



Future work

● Improving modeling with, e.g., representations from protein language models
● Leveraging structure-conditioned models for zero shot design
● Avoiding bottlenecks of DNA synthesis costs using randomized DNA 

synthesis protocols
● Incorporating experimental uncertainty from sequencing data



Summary of our findings

● MLDE outperformed DE when compared head-to-head
● TeleProt is a flexible framework for balancing evolutionary and assay-labeled 

data when designing libraries.
● MSAs are powerful for zero shot design. We didn’t use structure or 

large-scale pretraining! 
● Using high-throughput experiments enabled us to employ a large, diverse 

portfolio of sequence design approaches
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Additional Info





(a) Model-designed variants (green) were active 
at distances from the wildtype well beyond active 
variants seen in the training set (purple). In (b) we 
visualize the distinct mutations present in the hits 
in the training set and designs. The set of 
mutations found in active variants included novel 
mutations extending beyond those seen in 
training data from prior rounds. By definition, hit 
recombination is constrained to recombine hits 
seen in the prior rounds and thus it can not 
expand the set of mutations beyond the purple 
mutations in any round. Each row corresponds to 
models trained on data from a given round, i.e. 
the first row shows designs from models trained 
on G1 data (including the ‘g2_redux’ library 
screened in parallel with G4), the second row 
shows designs from models trained on G2 data, 
and the third row shows designs from models 
trained on G3 data. 

ML methods extrapolated beyond their training set



ML methods extrapolated beyond their training set

● Each row = 1 round
● mutations found to be 

hits in designed 
sequences aren’t 
present in hits in the 
training data.

● By definition, HR 
cannot extrapolate

G1:

G2:





Add random 
mutations  

in-vitro

DNA library Isolate top-performing 
variants

Traditional directed evolution

...

Recombine top variants 
in-vitro



f(x) 
acquisition function

p(x) 
proposal 

distribution

local search

{x, y}
experimental data 

Candidate Generation #2: Proposal Distribution

Goal:

Sample variants that are likely to be 
functional and also in regions where the 
acquisition function is reliable.

Techniques used:

● Sample from a VAE trained on a 
combination of homologs and hits 
from prior rounds.

● Estimate the effect of each mutation 
using an additive model. Sample 
combinations of the top-scoring 
mutations (ProSAR; Fox et al. 2007).
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