Engineering highly active and diverse nuclease enzymes by combining machine learning and ultra-high-throughput screening

Neil Thomas + David Belanger EvolutionaryScale + Google Deepmind

biorxiv.org/content/10.1101/2024.03.21.585615 github.com/google-deepmind/nuclease_design

Talk Roadmap

- Project Goals + Structure of Campaign
- Methods
 - ML Library Design
 - High Throughput Screening + Data Collection
- Results
 - Top Variants
 - Overall Library
 - Zero-shot
- Discussion

Project Goals + Structure

Stages of enzyme engineering

Focus of this seminar series: using ML to improve both discovery and optimization

This talk: a deep dive about an optimization project

NucB - a nonspecific endonuclease

- hydrolyzes both single- and double-stranded DNA substrates (light orange)
- Isolated from Bacillus Licheniformis
- Optimal pH 9

Basle et al., 2018 "Crystal structure of NucB, a biofilm-degrading endonuclease"

Goal of the optimization campaign: restore and improve NucB activity to unlock uses as a therapeutic

Target clinical application

Degrade biofilms that accumulate on chronic wounds

Challenge

• 80% reduced activity at pH 7 (therapeutic pH)

Protein optimization goal

Improve the catalytic activity of NucB at pH 7.

Methods research goal

Demonstrate that ML-guided protein design can improve over directed evolution when both use extremely high throughput experiments.

Experimental Platform - Ultra-high-throughput screening

Triplebar 8

Thousands of droplets per second!

The two ways that we used cell sorting

The two ways that we used cell sorting

Baseline directed evolution techniques

- Fully in-vitro
- Independent campaign
- Mutagenesis followed by screening
- Mutagenesis:
 - Error-prone PCR
 - Recombination (shuffling)

Hit Recombination - HR

- Designed *in-silico*
- Model-free
- Screened in parallel with our designed libraries

Mutagenize

DE

Screen

Recombine Hits

HR

Screen

• If A and B are both good, design A+B for the subsequent round

Baseline directed evolution techniques

- Fully in-vitro
- Independent campaign
- Mutagenesis followed by screening
- Mutagenesis:
 - Error-prone PCR
 - Recombination (shuffling)

Hit Recombination - HR

Maybe it's not that well known, but the recombination space is relatively dense functional proteins (I thought this was somewhat known since schema). Take 2-5 functional sequences, recombine them however you like, you'd find a much much higher number of them to be functional than random.

Mutagenize

DE

Screen

These are very successful techniques!

Campaign sizes ~10K per round

Zero-shot design: Could we have obtained a better initial Library than error-prone PCR?

What we did

Generate a library using no experimental data for model training.

Compare the library to epPCR.

ML-designed initial library

Methods

ML Library Design Methods

TeleProt: our library design framework

space:

Search

consider substitutions (no indels) to the WT

Acquisition function:

use a model f(seq) to predict enzyme activity

Candidate generation:

find new sequences with high f(seq)

Batch selection:

select a diverse subset of candidates

Supervised Model Fitting

MIKKWAV LLFSALVLIGLSGGAAYSPQHAEGA MIKKWAVHLLFSALVLIGLSGGAAYSPQHAEGA MIKKWAVHLLFSALVLIGLSGGAAYSPQHAEGA MIKKWAVHLLFSALVLIGLSGGAAYSPQHAEGA MIKKWAVHLLFSALVLIGLSGGAAYSPQHAEGA MIKKWAVHLLFSALVLIGLSGGAAYSPQHAEGA MIKKWAVHLLFSALVLIGLSGGAAYSPQHAEGA MIKKWAVHLLFSALVLIGLSGGAAYSPQHAEGA MIKKWAVHLLFSALVLIGLSGGAAYSPQHAEGA

Enzyme activity data

Split data into train and test sets

CNN Classifier

Unsupervised Model Fitting

Similar model architecture as Riesselman et al., 2018

Candidate Generation #1: Local Search

Goal:

Find variants with high acquisition function score that are in regions close to the training data.

Techniques used:

Initialize the search at the WT and at hits from prior rounds.

Evolve a population of sequences towards those with high score.

Use an ensemble of different non-model-based methods for mutating high-scoring sequences.

Candidate Generation #2: Proposal Distribution

Goal:

Sample variants that are likely to be functional and also in regions where the acquisition function is reliable.

Techniques used:

- VAE: Sample from a VAE trained on a combination of homologs and hits from prior rounds.
- ProSAR: Estimate the effect of each mutation using an additive model.
 Sample combinations of the top-scoring mutations (Fox et al. 2007).

Batch Selection

Assign each candidate (green) an 'extrapolation score': min distance from a hit in the training data (orange).

ii

Specify a target distribution over extrapolation scores

Select a subset of the candidates that satisfy the extrapolation score distribution and also do not over-use individual mutations.

Why is this necessary?

Simply selecting the top-scoring sequences leads to a low diversity library and doesn't provide a controllable explore-exploit tradeoff.

Sampling variants from a VAE

```
VAE (Kingma et al., 2014)
```

Generative model: $z \sim Normal$, $x \sim Decoder(z)$

```
Inference: z \sim Encoder(x)
```

Sampling WT neighbors (Giessel et al., 2022)

 $x \sim Decoder(Encoder(WT))$

Reject any x with too many mutations or gaps.

TeleProt Systems

Method Name	Acquisition Function	Candidate Generation	Round
Zero-shot	None	Neighbor sampling with VAE ¹⁰⁰	ZS
MBO-DNN	CNN classifier	Randomized local search	ML2, ML3, ML4
Prosar+Screen	VAE likelihood	Combinatorial library from ProSAR ⁶¹	ML2, ML3
Sample+Screen	CNN classifier	Neighbor sampling with semi-supervised VAE	ML4

Data source Evolution	Assay	Both
-----------------------	-------	------

Key idea

As data accumulated, we transitioned from depending on evolutionary data to assay-labeled data.

Data Collection

Key idea: Enrichment factors

Enrichment Factor: A: 0 B: 2

Key idea: Use fiducial sequences to calibrate hit-calling

- Fiducial has known activity
- Multiple replicates of a fiducial using synonymous codons to serve as a null distribution
- For a new variant EF: assign p-value with right-sided t-test compared to fiducial
- Call a "hit" if p-value is significant after **FDR correction**

Sorting at multiple thresholds gives data with intermediate activity resolution

Sort at multiple thresholds

Compute enrichment Resolve labels and construct dataset

Results

Reminder: Campaign

Reminder: Baseline DE techniques

Directed Evolution - DE

- Fully in-vitro
- Independent campaign
- Mutagenesis followed by screening
- Mutagenesis:
 - Error-prone PCR
 - Recombination (shuffling)

Hit Recombination - HR

- Designed *in-silico*
- Model-free
- Screened in parallel with our designed libraries

Mutagenize

DE

Screen

Recombine Hits

HR

Screen

• If A and B are both good, design A+B for the subsequent round

Activity of the top-performing variants

Isolating Top Performers

• • •

۰

Sort sequentially at higher thresholds

Top ML variant: 19x. Top DE variant: 12x.

• Purified enzyme activity assessed at 4 concentrations

• Top hit validated for biofilm degradation

Note: A73R ~8x improvement

Assessing the Overall Composition of the Libraries

ML produced a much higher rate of hits than HR

ML4 maintained high activity (>A73R) while designing out to 15 mutations

ML designs were substantially more diverse than HR designs

- Cluster diameter: maximum Hamming distance between sequences in the same cluster.
- Similar pre-sort library sizes

Designs exhibit Structural Diversity

- Active designs span many positions
- Span many functional domains

HR

ML

Designs exhibit Structural Diversity

- Active designs span many positions
- Span many functional domains

Zero-Shot Initial Library Design

Reminder: zero-shot design

ML-designed initial library

Why did we pursue this investigation?

Retrospective analysis on the G1 data showed that a zero-shot model could be used to enrich for functional variants.

We could have reduced the library by 50% while keeping 75% of the functional variants

Finding enzyme variants with non-zero activity

zero-shot hits are more diverse

zero-shot design has a better hit rate

Finding enzyme variants that are better than the WT

zero-shot hits are more diverse

zero-shot design has a better hit rate

Our Enzyme Activity Dataset

github.com/google-deepmind/nuclease_design

Our open-source enzyme fitness landscape - 56K variants!

- Active variants out to >13 mutations
- Four discrete activity levels

• Many more active variants than epPCR alone

github.com/google-deepmind/nuclease_design

Discussion

Future work

- Improving modeling with, e.g., representations from protein language models
- Leveraging structure-conditioned models for zero shot design
- Avoiding bottlenecks of DNA synthesis costs using randomized DNA synthesis protocols
- Incorporating experimental uncertainty from sequencing data

Summary of our findings

- MLDE outperformed DE when compared head-to-head
- TeleProt is a flexible framework for balancing evolutionary and assay-labeled data when designing libraries.
- MSAs are powerful for zero shot design. We didn't use structure or large-scale pretraining!
- Using high-throughput experiments enabled us to employ a large, diverse portfolio of sequence design approaches

Acknowledgements

Google

Maria Chavarha

Lucy Colwell

Charlie Emrich

Jun Kim

Abi Ramanan

Triplebar 🕉 Triplebar Jeremy Agresti Lucas Frenz Kathleen Hirano Kevin Hoff Kosuke Iwai Hanson Lee Kendra Nyberg Vanja Polic Chenling Xu

Additional Info

ML methods extrapolated beyond their training set

ML methods extrapolated beyond their training set

Traditional directed evolution

Candidate Generation #2: Proposal Distribution

Goal:

Sample variants that are likely to be functional and also in regions where the acquisition function is reliable.

Techniques used:

- Sample from a VAE trained on a combination of homologs and hits from prior rounds.
- Estimate the effect of each mutation using an additive model. Sample combinations of the top-scoring mutations (ProSAR; Fox et al. 2007).

Project goals + structure: Neil

ML methods: David

Data collection / processing: Neil

Results: Neil

Zero-Shot results: David

Dataset: David

Discussion: Neil